If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x=50
We move all terms to the left:
3x^2+7x-(50)=0
a = 3; b = 7; c = -50;
Δ = b2-4ac
Δ = 72-4·3·(-50)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{649}}{2*3}=\frac{-7-\sqrt{649}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{649}}{2*3}=\frac{-7+\sqrt{649}}{6} $
| 6k^2+69k+192=0 | | 2x+4x+5x=-5 | | A=1/23.14r^2 | | 11w=2w+54 | | 188=m | | x*x*x*x=1.33 | | x*x*x*4=1.33 | | 2g^2+4g+10=0 | | 67/100=x/20 | | 67/10=x/20 | | k=6.8k+27.2 | | x+5-2x=-14 | | 84/k=-16.8 | | 3x–22=8x+(3×6) | | 2x+4=-12+4x | | y+3/2y+1-y-3/y+1=4 | | 7/2x-1=2x+8 | | 117=(1/2)h(10+3) | | 17=-7+4m | | 13m-9=7m+15 | | 5t^2+3t-7=0 | | 117=(1/2)h(13) | | 1/2x+12=-24 | | 2/7+1/5=1/x | | 2x+50=3x+25 | | 4x^2+6x^2=4x | | 144-4x=88 | | -2(x+6)3=-11x+4(x+4) | | (x/3)-6=7 | | 4x+12(×-3)=28 | | -2(x+6)3=-11x+4(x=4 | | -2x-10=24 |